# Karoubianness of a triangulated category 

Jue Le ${ }^{\text {a }}$, Xiao-Wu Chen ${ }^{\text {b,* }}$<br>${ }^{a}$ Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, PR China<br>${ }^{\mathrm{b}}$ Department of Mathematics, University of Science and Technology of China, Hefei 230026, PR China<br>Received 24 October 2006<br>Available online 4 January 2007<br>Communicated by Michel Van den Bergh<br>Dedicated to Professor Yingbo Zhang on the occasion of her sixtieth birthday


#### Abstract

We prove that triangulated categories with bounded $t$-structures are Karoubian. Consequently, for an Extfinite abelian category over a commutative noetherian complete local ring, its bounded derived category is Krull-Schmidt.


© 2007 Elsevier Inc. All rights reserved.
Keywords: Karoubianness; Triangulated category; $t$-Structure

## 1. Introduction

Let $\mathcal{D}$ be a triangulated category [V] with its shift functor denoted by [1]. Recall from [BBD] that a $t$-structure on $\mathcal{D}$ is a pair of strictly (i.e. closed under isomorphisms) full additive subcategories ( $\mathcal{D} \leqslant 0, \mathcal{D}{ }^{\geqslant 0}$ ) satisfying the following conditions:
(T1) $\operatorname{Hom}_{\mathcal{D}}(X, Y[-1])=0$ for all $X \in \mathcal{D}^{\leqslant 0}$ and $Y \in \mathcal{D} \geqslant 0$;
(T2) $D^{\leqslant 0}$ is closed under the functor [1], and $D^{\geqslant 0}$ is closed under the functor [-1];
(T3) for each $X \in \mathcal{D}$, there is an exact triangle $A \rightarrow X \rightarrow B[-1] \rightarrow A[1]$ with $A \in \mathcal{D} \leqslant 0$ and $B \in \mathcal{D} \geqslant 0$.

[^0]Set $\mathcal{D}^{\leqslant n}=\mathcal{D}^{\leqslant 0}[-n]$ and $\mathcal{D} \geqslant n=\mathcal{D}^{\geqslant 0}[-n], n \in \mathbb{Z}$. The $t$-structure is called bounded (cf. [GM1, p. 136] and [GM2, p. 286, Exercises]) if for each $X \in \mathcal{D}$, there exists $m \leqslant n$ such that $X \in$ $\mathcal{D} \leqslant n \cap \mathcal{D} \geqslant m$.

Recall that in an additive category $\mathfrak{a}$, an idempotent morphism $e: X \rightarrow X$ is said to be split if there are two morphisms $u: X \rightarrow Y$ and $v: Y \rightarrow X$ such that $v \circ u=e$ and $u \circ v=\operatorname{Id}_{Y}$. The category $\mathfrak{a}$ is said to be Karoubian (i.e. idempotent-split) provided that every idempotent-splits.

Our main theorem is
Theorem. Let $\mathcal{D}$ be a triangulated category with a bounded $t$-structure. Then $\mathcal{D}$ is Karoubian.
Let $\mathcal{A}$ be an abelian category. It is well known that the bounded derived category $D^{b}(\mathcal{A})$ has a natural bounded $t$-structure. So we have

Corollary A. [BS, Corollary 2.10] Let $\mathcal{A}$ be an abelian category. Then the bounded derived category $D^{b}(\mathcal{A})$ is Karoubian.

Let $R$ be a commutative noetherian ring which is complete and local. An abelian category $\mathcal{A}$ over $R$ is said to be Ext-finite, if for each $X, Y \in \mathcal{A}, n \geqslant 0$, the $R$-module $\operatorname{Ext}_{\mathcal{A}}^{n}(X, Y)$ is finitely-generated. It is not hard to see that $\mathcal{A}$ is Ext-finite if and only if $D^{b}(\mathcal{A})$ is Hom-finite over $R$. Recall that an additive category is Krull-Schmidt if each object is a finite direct sum of indecomposables with local endomorphism rings. It is shown in [CYZ, Theorem A.1] that an additive category is Krull-Schmidt if and only if it is Karoubian and for each object $X$, $\operatorname{End}(X)$ is a semiperfect ring. Finally note that an algebra over $R$ which is finitely-generated as a $R$-module is semiperfect (cf. [L, Example (23.3)]). So we have

Corollary B. Let $R$ be a commutative noetherian ring which is complete and local, and let $\mathcal{A}$ be an Ext-finite abelian category over $R$. Then the bounded derived category $D^{b}(\mathcal{A})$ is a KrullSchmidt category.

## 2. Proof of Theorem

Before proving the theorem, we need some preparations.
2.1. Let $\mathcal{C}$ be a triangulated category. The following lemma is well known.

Lemma 2.1. Let $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1]$ be an exact triangle. Then we have
(1) If $e: Z \rightarrow Z$ is a morphism satisfying $e \circ v=v$ and $w \circ e=w$, then $e$ is an isomorphism.
(2) Assume that $x: Z \rightarrow Z^{\prime}$ and $y: Z^{\prime} \rightarrow Z$ are two morphisms satisfying $x \circ v=0$ and $w \circ y=0$. Then $x \circ y=0$.

Proof. (1) By assumption, we have the following morphism of exact triangles


Then it is well known that $e$ is an isomorphism (e.g., by using [GM2, IV.1, Corollary 4(a)]).
(2) Since $x \circ v=0$, then it is again well known that $x$ factors through $w$ (e.g., by using [GM2, IV.1, Proposition 3]). Suppose $x^{\prime}: X[1] \rightarrow Z^{\prime}$ such that $x=x^{\prime} \circ w$. Hence $x \circ y=x^{\prime} \circ w \circ y=0$.

Let $\mathfrak{a}$ be any additive category. An idempotent $e: X \rightarrow X$ splits if there are morphisms $u: X \rightarrow Y$ and $v: Y \rightarrow X$ such that $v \circ u=e$ and $u \circ v=\operatorname{Id}_{Y}$. Then $u$ and $v$ are the cokernel and kernel of the morphism $\operatorname{Id}_{X}-e$, respectively. Moreover, it is not hard to see that an idempotent $e$ splits if and only if $1-e$ has a kernel, if and only if $1-e$ has a cokernel. We say that an idempotent $e$ strongly splits if both $e$ and $1-e$ split. In this case, assume that $1-e$ splits as $X \xrightarrow{u^{\prime}} Y^{\prime} \xrightarrow{v^{\prime}} X$, then $\binom{u}{u^{\prime}}: X \rightarrow Y \oplus Y^{\prime}$ is an isomorphism, whose inverse is given by ( $v v^{\prime}$ ). The following lemma seems to be known.

Lemma 2.2. Let $e: X \rightarrow X$ be an idempotent morphism in a triangulated category $\mathcal{C}$. Then $e$ splits if and only if e strongly splits.

Proof. We just prove the "only if" part. Assume that $e$ splits as $X \xrightarrow{u} Y \xrightarrow{v} X$. We need to prove that $1-e$ splits. By the above facts, it suffices to show that $e$ has a cokernel. Since $e=v \circ u$ and that $u$ is clearly epi, thus we know the cokernel of $v$, if in existence, is just the cokernel of $e$.

Take an exact triangle $Y \xrightarrow{v} X \xrightarrow{\pi} Z \rightarrow Y$ [1]. Note that $v$ is a section, then by [H, p. 7, Lemma 1.4] one obtains that $\pi$ is a retraction. Now using [H, Chapter I, Proposition 1.2(b)], it is not hard to see that $\pi$ is the cokernel of $v$, and thus the cokernel of $e$. This completes the proof.

We have the following key observation.

Proposition 2.3. Let the following diagram be a morphism of exact triangles

with each $e_{i}$ an idempotent. Then if $e_{1}$ and $e_{2}$ splits, so does $e_{3}$.

Proof. By Lemma 2.2, both $e_{1}$ and $e_{2}$ strongly split. We may assume that $X=X_{1} \oplus X_{2}, e_{1}=$ $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $Y=Y_{1} \oplus Y_{2}, e_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. By $e_{2} \circ u=u \circ e_{1}$, one deduces that $u$ is diagonalizable, say $u=\left(\begin{array}{cc}u_{1} & 0 \\ 0 & u_{2}\end{array}\right)$. Take the following exact triangles in $\mathcal{C}$ :

$$
X_{i} \xrightarrow{u_{i}} Y_{i} \xrightarrow{v_{i}} Z_{i} \xrightarrow{w_{i}} X_{i}[1], \quad i=1,2 .
$$

Hence there is an isomorphism of exact triangles


Set $e=\theta^{-1} \circ e_{3} \circ \theta$. Note that $e$ is also an idempotent, and $e$ splits if and only if $e_{3}$ splits. We have the following morphism of exact triangles


Write $e=\left(\begin{array}{ll}e_{11} & e_{12} \\ e_{21} & e_{22}\end{array}\right)$ in a matrix form. By the commutativity of the diagram (and using some matrix calculation), we get

$$
\begin{array}{lll}
e_{11} \circ v_{1}=v_{1}, & w_{1} \circ e_{11}=w_{1} ; & \\
e_{12} \circ v_{2}=0, & e_{21} \circ v_{1}=0, & e_{22} \circ v_{2}=0 \\
w_{1} \circ e_{12}=0, & w_{2} \circ e_{21}=0, & w_{2} \circ e_{22}=0
\end{array}
$$

Using Lemma 2.1(1), we deduce that $e_{11}$ is an isomorphism. Applying Lemma 2.1(2) four times, we get

$$
e_{12} \circ e_{21}=0, \quad e_{12} \circ e_{22}=0, \quad e_{22}^{2}=0 \quad \text { and } \quad e_{21} \circ e_{12}=0
$$

By $e^{2}=e$ and using the above four identities, we obtain

$$
e_{11}^{2}=e_{11}, \quad e_{11} \circ e_{12}=e_{12}, \quad e_{21} \circ e_{11}+e_{22} \circ e_{21}=e_{21} \quad \text { and } \quad e_{22}=0
$$

Then $e_{11}=\operatorname{Id}_{Z_{1}}$ and $e=\left(\begin{array}{cc}1 & e_{12} \\ e_{21} & 0\end{array}\right)$. Note that $e_{12} \circ e_{21}=0$ and $e_{21} \circ e_{12}=0$, hence $e$ splits as

$$
Z_{1} \oplus Z_{2} \xrightarrow{\left(1 e_{12}\right)} Z_{1} \xrightarrow{\binom{1}{e_{21}}} Z_{1} \oplus Z_{2}
$$

This completes the proof.
Remark 2.4. Note that the proofs of Lemmas 2.1, 2.2 and Proposition 2.3 do not use the axiom (TR4) in [V, p. 3]. Hence they hold for pre-triangulated categories.
2.2. In what follows, $\mathcal{D}$ is a triangulated category with a $t$-structure $\left(\mathcal{D}^{\leqslant 0}, \mathcal{D} \geqslant 0\right)$. By $[\mathrm{H}$, p. 58], the pair $\left(\mathcal{D}^{\leqslant 0}, \mathcal{D}^{\geqslant 1}\right)$ is a torsion pair of $\mathcal{D}$, in particular, $\mathcal{D}^{\leqslant 0}$ and $\mathcal{D} \geqslant 1$ are closed under "extensions," i.e., for any exact triangle $X \rightarrow Y \rightarrow Z \rightarrow X[1]$ with $X, Z \in \mathcal{D} \leqslant 0$ (respectively $X, Z \in \mathcal{D}^{\geqslant 1}$ ), so does $Y$. Now it is not hard to infer that both $\mathcal{D}^{\leqslant n}$ and $\mathcal{D} \geqslant n$ are closed under extensions for each $n \in \mathbb{Z}$.

Recall from [GM1, p. 134] and [GM2, IV.4] there are truncation functors $\tau_{\leqslant 0}: \mathcal{D} \rightarrow \mathcal{D} \leqslant 0$ and $\tau_{\geqslant 1}: \mathcal{D} \rightarrow \mathcal{D} \geqslant 1$ which satisfy the following conditions:
(1) for each $X \in \mathcal{D}$, there is an exact triangle $\tau_{\leqslant 0} X \rightarrow X \rightarrow \tau_{\geqslant 1} X \rightarrow\left(\tau_{\leqslant 0} X\right)[1]$ (cf. axiom (T3));
(2) for each morphism $f: X \rightarrow Y$, one has the following morphism of triangles


In general, we define $\tau_{\leqslant n}: \mathcal{D} \rightarrow \mathcal{D}^{\leqslant n}$ and $\tau_{\geqslant n+1}: \mathcal{D} \rightarrow \mathcal{D}^{\geqslant n+1}$ by $\tau_{\leqslant n}=[-n] \circ \tau_{\leqslant 0} \circ[n]$ and $\tau_{\geqslant n+1}=[-n] \circ \tau_{\geqslant 1} \circ[n]$, respectively. Then it is not hard to see that similar conditions as (1) and (2) hold for $\tau_{\leqslant n}$ and $\tau_{\geqslant n+1}$.

The following fact is easy (cf. [GM2, p. 280]).

Lemma 2.5. Let $m \leqslant n$. Then $\tau_{\leqslant n}\left(\mathcal{D}^{\geqslant m}\right) \subseteq \mathcal{D}^{\geqslant m} \cap \mathcal{D}^{\leqslant n}$ and $\tau_{\geqslant m}\left(\mathcal{D}^{\leqslant n}\right) \subseteq \mathcal{D}^{\leqslant n} \cap \mathcal{D}^{\geqslant m}$.
Proof. We only show the first inclusion. It suffices to show $\tau_{\leqslant n}(\mathcal{D} \geqslant m) \subseteq \mathcal{D} \geqslant m$. Let $X \in \mathcal{D} \geqslant m$. Consider the exact triangle $\tau_{\leqslant n} X \rightarrow X \rightarrow \tau_{\geqslant n+1} X \rightarrow\left(\tau_{\leqslant n} X\right)[1]$. So $\tau_{\leqslant n} X$ is an extension of $(\tau \geqslant n+1$ ) $[-1]$ and $X$, both of which are easily seen to lie in $\mathcal{D} \geqslant m$. Note that $\mathcal{D} \geqslant m$ is closed under extensions, thus we infer that $X \in \mathcal{D} \geqslant m$.

From now on, we assume that the $t$-structure in our consideration is bounded, i.e., for each $X$, there exists $m \leqslant n$ such that $X \in \mathcal{D} \leqslant n \cap \mathcal{D} \geqslant m$. First we note that $\bigcap_{n \in \mathbb{Z}} \mathcal{D}^{\leqslant n}=\{0\}$. To see this, let $X \in \bigcap_{n \in \mathbb{Z}} \mathcal{D} \leqslant n$. By the bounded property, we may assume that $X \in \mathcal{D}^{\geqslant m+1}$ for some $m$. Note that $\operatorname{Hom}_{\mathcal{D}}\left(\mathcal{D}^{\leqslant m}, \mathcal{D} \geqslant m+1\right)=0$, and $X \in \mathcal{D} \leqslant m$. $\operatorname{So~}^{\geqslant \operatorname{Hom}_{\mathcal{D}}}(X, X)=0$, i.e., $X=0$. Similarly, we have $\bigcap_{n \in \mathbb{Z}} \mathcal{D}^{\geqslant n}=\{0\}$. Therefore, the $t$-structure is non-degenerate in the sense of [GM1, p. 135, Theorem 3.5.1]. Moreover, by [GM1, p. 135, Theorem 3.5.1c] one sees immediately that our notion of bounded $t$-structures coincides with the one in [GM1, p. 136] (and also in [GM2, p. 286, Exercises]).

Let $X \in \mathcal{D}$ be non-zero. Set $b(X)=\max \{n \mid X \in \mathcal{D} \geqslant n\}, t(X)=\min \{n \mid X \in \mathcal{D} \leqslant n\}$ and $w(X)=t(X)-b(X)+1$. If $X$ is zero, set $w(X)=0$. By the above non-degeneratedness, we know that $b(X)$ and $t(X)$ are well defined. It is direct to see that $w(X) \geqslant 0$, which will be called the width of $X$.

Proof of Theorem. Set $\mathcal{A}=\mathcal{D} \leqslant 0 \cap \mathcal{D} \geqslant 0$ to be the core (i.e. heart) of the $t$-structure. By [BBD], $\mathcal{A}$ is an abelian category, in particular, every idempotent in $\mathcal{A}$ splits.

We will show that for each $n \geqslant 1$, every idempotent $e: X \rightarrow X$ with $w(X) \leqslant n$ splits. This will complete the proof. Use induction on the width. If $n=1$, then $X \in \mathcal{A}[-i]$ with $i=b(X)=t(X)$. Since $\mathcal{A}$ and thus $\mathcal{A}[-i]$ are abelian categories, so $e$ splits in $\mathcal{A}[-i]$, and thus in $\mathcal{D}$.

Assume now the assertion holds for $n$. Consider $e: X \rightarrow X$ to be an idempotent with $w(X)=n+1$. Assume that $b(X)=m$. Therefore by Lemma 2.5 , one has $\tau_{\leqslant m} X \in \mathcal{A}[-m]$ and $\tau_{\geqslant m+1} X \in \mathcal{D}^{\leqslant n+m} \cap \mathcal{D} \geqslant m+1$, and thus $w\left(\tau_{\leqslant m} X\right)=1$ and $w\left(\tau_{\geqslant m+1} X\right) \leqslant n$. Consider the following morphisms of exact triangles:


Note that both $\tau_{\leqslant m}(e)$ and $\tau_{\geqslant m+1}(e)$ are idempotents (by the functorial property of the truncation functors). By the induction hypothesis, both $\tau_{\leqslant m}(e)$ and $\tau_{\geqslant m+1}(e)$ split. Applying (TR2) and then Proposition 2.3, we obtain that $e$ splits. This completes the proof.

## Acknowledgments

Let us remark that the theorem and its proof are inspired by some discussions with Prof. Michel Van den Bergh and Prof. Pu Zhang. We thank them very much.

## References

[BS] P. Balmer, M. Schlichting, Idempotent completion of triangulated categories, J. Algebra 236 (2) (2001) 819-834.
[BBD] A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Astérisque 100 (1982).
[CYZ] X.W. Chen, Y. Ye, P. Zhang, Algebras of derived dimension zero, Comm. Algebra, in press, math.RT/0608377.
[GM1] S.I. Gelfand, Yu.I. Manin, Homological Algebra, Springer-Verlag, Berlin, 1999.
[GM2] S.I. Gelfand, Yu.I. Manin, Methods of Homological Algebra, second ed., Springer-Verlag, Berlin, 2003.
[H] D. Happel, Triangulated Categories in Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser., vol. 119, Cambridge Univ. Press, 1988.
[L] T.Y. Lam, A First Course in Noncommutative Rings, Grad. Texts in Math., vol. 13, Springer-Verlag, 1991.
[V] J.L. Verdier, Catégories dérivées, état 0, in: Lecture Notes in Math., vol. 569, 1977, pp. 262-311.


[^0]:    Partly supported by the National Natural Science Foundation of China (Grant Nos. 10301033 and 10501041).

    * Corresponding author.

    E-mail addresses: lejue@sjtu.edu.cn (J. Le), xwchen@mail.ustc.edu.cn (X.-W. Chen).

