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Abstract

We prove that triangulated categories with bounded t-structures are Karoubian. Consequently, for an Ext-
finite abelian category over a commutative noetherian complete local ring, its bounded derived category is
Krull–Schmidt.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let D be a triangulated category [V] with its shift functor denoted by [1]. Recall from [BBD]
that a t-structure on D is a pair of strictly (i.e. closed under isomorphisms) full additive subcat-
egories (D�0,D�0) satisfying the following conditions:

(T1) HomD(X,Y [−1]) = 0 for all X ∈D�0 and Y ∈D�0;
(T2) D�0 is closed under the functor [1], and D�0 is closed under the functor [−1];
(T3) for each X ∈ D, there is an exact triangle A → X → B[−1] → A[1] with A ∈ D�0 and

B ∈D�0.
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Set D�n = D�0[−n] and D�n = D�0[−n], n ∈ Z. The t-structure is called bounded (cf. [GM1,
p. 136] and [GM2, p. 286, Exercises]) if for each X ∈ D, there exists m � n such that X ∈
D�n ∩D�m.

Recall that in an additive category a, an idempotent morphism e :X → X is said to be split
if there are two morphisms u :X → Y and v :Y → X such that v ◦ u = e and u ◦ v = IdY . The
category a is said to be Karoubian (i.e. idempotent-split) provided that every idempotent-splits.

Our main theorem is

Theorem. Let D be a triangulated category with a bounded t-structure. Then D is Karoubian.

Let A be an abelian category. It is well known that the bounded derived category Db(A) has
a natural bounded t-structure. So we have

Corollary A. [BS, Corollary 2.10] Let A be an abelian category. Then the bounded derived
category Db(A) is Karoubian.

Let R be a commutative noetherian ring which is complete and local. An abelian category
A over R is said to be Ext-finite, if for each X,Y ∈ A, n � 0, the R-module ExtnA(X,Y ) is
finitely-generated. It is not hard to see that A is Ext-finite if and only if Db(A) is Hom-finite
over R. Recall that an additive category is Krull–Schmidt if each object is a finite direct sum
of indecomposables with local endomorphism rings. It is shown in [CYZ, Theorem A.1] that an
additive category is Krull–Schmidt if and only if it is Karoubian and for each object X, End(X) is
a semiperfect ring. Finally note that an algebra over R which is finitely-generated as a R-module
is semiperfect (cf. [L, Example (23.3)]). So we have

Corollary B. Let R be a commutative noetherian ring which is complete and local, and let A
be an Ext-finite abelian category over R. Then the bounded derived category Db(A) is a Krull–
Schmidt category.

2. Proof of Theorem

Before proving the theorem, we need some preparations.

2.1. Let C be a triangulated category. The following lemma is well known.

Lemma 2.1. Let X
u−→ Y

v−→ Z
w−→ X[1] be an exact triangle. Then we have

(1) If e :Z → Z is a morphism satisfying e ◦ v = v and w ◦ e = w, then e is an isomorphism.
(2) Assume that x :Z → Z′ and y :Z′ → Z are two morphisms satisfying x ◦ v = 0 and

w ◦ y = 0. Then x ◦ y = 0.

Proof. (1) By assumption, we have the following morphism of exact triangles

X
u

Y
v

Z

e

w
X[1]

X
u

Y
v

Z
w

X[1].
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Then it is well known that e is an isomorphism (e.g., by using [GM2, IV.1, Corollary 4(a)]).
(2) Since x ◦ v = 0, then it is again well known that x factors through w (e.g., by using [GM2,

IV.1, Proposition 3]). Suppose x′ :X[1] → Z′ such that x = x′ ◦w. Hence x ◦ y = x′ ◦w ◦ y = 0.�
Let a be any additive category. An idempotent e :X → X splits if there are morphisms

u :X → Y and v :Y → X such that v ◦ u = e and u ◦ v = IdY . Then u and v are the coker-
nel and kernel of the morphism IdX − e, respectively. Moreover, it is not hard to see that an
idempotent e splits if and only if 1 − e has a kernel, if and only if 1 − e has a cokernel. We say
that an idempotent e strongly splits if both e and 1 − e split. In this case, assume that 1 − e splits

as X
u′−→ Y ′ v′−→ X, then

(
u
u′
)

:X → Y ⊕Y ′ is an isomorphism, whose inverse is given by (v v′).
The following lemma seems to be known.

Lemma 2.2. Let e :X → X be an idempotent morphism in a triangulated category C. Then e

splits if and only if e strongly splits.

Proof. We just prove the “only if” part. Assume that e splits as X
u−→ Y

v−→ X. We need to
prove that 1−e splits. By the above facts, it suffices to show that e has a cokernel. Since e = v ◦u

and that u is clearly epi, thus we know the cokernel of v, if in existence, is just the cokernel of e.
Take an exact triangle Y

v−→ X
π−→ Z → Y [1]. Note that v is a section, then by [H, p. 7,

Lemma 1.4] one obtains that π is a retraction. Now using [H, Chapter I, Proposition 1.2(b)], it
is not hard to see that π is the cokernel of v, and thus the cokernel of e. This completes the
proof. �

We have the following key observation.

Proposition 2.3. Let the following diagram be a morphism of exact triangles

X

e1

u
Y

e2

v
Z

e3

w
X[1]

e1[1]

X
u

Y
v

Z
w

X[1]

with each ei an idempotent. Then if e1 and e2 splits, so does e3.

Proof. By Lemma 2.2, both e1 and e2 strongly split. We may assume that X = X1 ⊕ X2, e1 =( 1 0
0 0

)
and Y = Y1 ⊕ Y2, e2 = ( 1 0

0 0

)
. By e2 ◦ u = u ◦ e1, one deduces that u is diagonalizable, say

u = ( u1 0
0 u2

)
. Take the following exact triangles in C:

Xi
ui−→ Yi

vi−→ Zi
wi−→ Xi[1], i = 1,2.

Hence there is an isomorphism of exact triangles
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X1 ⊕ X2

(u1 0
0 u2

)

Y1 ⊕ Y2

(v1 0
0 v2

)

Z1 ⊕ Z2

θ

(w1 0
0 w2

)

(X1 ⊕ X2)[1]

X
u

Y
v

Z
w

X[1].

Set e = θ−1 ◦ e3 ◦ θ . Note that e is also an idempotent, and e splits if and only if e3 splits.
We have the following morphism of exact triangles

X1 ⊕ X2

( 1 0
0 0

)

(u1 0
0 u2

)

Y1 ⊕ Y2

( 1 0
0 0

)

(v1 0
0 v2

)

Z1 ⊕ Z2

e

(w1 0
0 w2

)

(X1 ⊕ X2)[1]

( 1 0
0 0

)

X1 ⊕ X2

(u1 0
0 u2

)

Y1 ⊕ Y2

(v1 0
0 v2

)

Z1 ⊕ Z2

(w1 0
0 w2

)

(X1 ⊕ X2)[1].

Write e = ( e11 e12
e21 e22

)
in a matrix form. By the commutativity of the diagram (and using some

matrix calculation), we get

e11 ◦ v1 = v1, w1 ◦ e11 = w1;
e12 ◦ v2 = 0, e21 ◦ v1 = 0, e22 ◦ v2 = 0;
w1 ◦ e12 = 0, w2 ◦ e21 = 0, w2 ◦ e22 = 0.

Using Lemma 2.1(1), we deduce that e11 is an isomorphism. Applying Lemma 2.1(2) four times,
we get

e12 ◦ e21 = 0, e12 ◦ e22 = 0, e2
22 = 0 and e21 ◦ e12 = 0.

By e2 = e and using the above four identities, we obtain

e2
11 = e11, e11 ◦ e12 = e12, e21 ◦ e11 + e22 ◦ e21 = e21 and e22 = 0.

Then e11 = IdZ1 and e = ( 1 e12
e21 0

)
. Note that e12 ◦ e21 = 0 and e21 ◦ e12 = 0, hence e splits as

Z1 ⊕ Z2
(1 e12)−→ Z1

( 1
e21

)

−→ Z1 ⊕ Z2.

This completes the proof. �
Remark 2.4. Note that the proofs of Lemmas 2.1, 2.2 and Proposition 2.3 do not use the axiom
(TR4) in [V, p. 3]. Hence they hold for pre-triangulated categories.
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2.2. In what follows, D is a triangulated category with a t-structure (D�0,D�0). By [H,
p. 58], the pair (D�0,D�1) is a torsion pair of D, in particular, D�0 and D�1 are closed under
“extensions,” i.e., for any exact triangle X → Y → Z → X[1] with X,Z ∈ D�0 (respectively
X,Z ∈ D�1), so does Y . Now it is not hard to infer that both D�n and D�n are closed under
extensions for each n ∈ Z.

Recall from [GM1, p. 134] and [GM2, IV.4] there are truncation functors τ�0 :D → D�0 and
τ�1 :D → D�1 which satisfy the following conditions:

(1) for each X ∈ D, there is an exact triangle τ�0X → X → τ�1X → (τ�0X)[1] (cf. axiom
(T3));

(2) for each morphism f :X → Y , one has the following morphism of triangles

τ�0X

τ�0(f )

X

f

τ�1X

τ�1(f )

(τ�0X)[1]
τ�0(f )[1]

τ�0Y Y τ�1Y (τ�0Y)[1].

In general, we define τ�n :D → D�n and τ�n+1 :D → D�n+1 by τ�n = [−n] ◦ τ�0 ◦ [n]
and τ�n+1 = [−n] ◦ τ�1 ◦ [n], respectively. Then it is not hard to see that similar conditions as
(1) and (2) hold for τ�n and τ�n+1.

The following fact is easy (cf. [GM2, p. 280]).

Lemma 2.5. Let m � n. Then τ�n(D�m) ⊆ D�m ∩D�n and τ�m(D�n) ⊆ D�n ∩D�m.

Proof. We only show the first inclusion. It suffices to show τ�n(D�m) ⊆ D�m. Let X ∈ D�m.
Consider the exact triangle τ�nX → X → τ�n+1X → (τ�nX)[1]. So τ�nX is an extension
of (τ�n+1X)[−1] and X, both of which are easily seen to lie in D�m. Note that D�m is closed
under extensions, thus we infer that X ∈D�m. �

From now on, we assume that the t-structure in our consideration is bounded, i.e., for each X,
there exists m � n such that X ∈D�n ∩D�m. First we note that

⋂
n∈Z

D�n = {0}. To see this, let
X ∈ ⋂

n∈Z
D�n. By the bounded property, we may assume that X ∈ D�m+1 for some m. Note

that HomD(D�m,D�m+1) = 0, and X ∈ D�m. So HomD(X,X) = 0, i.e., X = 0. Similarly,
we have

⋂
n∈Z

D�n = {0}. Therefore, the t-structure is non-degenerate in the sense of [GM1,
p. 135, Theorem 3.5.1]. Moreover, by [GM1, p. 135, Theorem 3.5.1c] one sees immediately that
our notion of bounded t-structures coincides with the one in [GM1, p. 136] (and also in [GM2,
p. 286, Exercises]).

Let X ∈ D be non-zero. Set b(X) = max{n | X ∈ D�n}, t (X) = min{n | X ∈ D�n} and
w(X) = t (X) − b(X) + 1. If X is zero, set w(X) = 0. By the above non-degeneratedness, we
know that b(X) and t (X) are well defined. It is direct to see that w(X) � 0, which will be called
the width of X.

Proof of Theorem. Set A = D�0 ∩D�0 to be the core (i.e. heart) of the t-structure. By [BBD],
A is an abelian category, in particular, every idempotent in A splits.
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We will show that for each n � 1, every idempotent e :X → X with w(X) � n splits. This will
complete the proof. Use induction on the width. If n = 1, then X ∈A[−i] with i = b(X) = t (X).
Since A and thus A[−i] are abelian categories, so e splits in A[−i], and thus in D.

Assume now the assertion holds for n. Consider e :X → X to be an idempotent with
w(X) = n + 1. Assume that b(X) = m. Therefore by Lemma 2.5, one has τ�mX ∈ A[−m]
and τ�m+1X ∈ D�n+m ∩ D�m+1, and thus w(τ�mX) = 1 and w(τ�m+1X) � n. Consider the
following morphisms of exact triangles:

τ�mX

τ�m(e)

X

e

τ�m+1X

τ�m+1(e)

(τ�mX)[1]
τ�m(e)[1]

τ�mX X τ�m+1X (τ�mX)[1].

Note that both τ�m(e) and τ�m+1(e) are idempotents (by the functorial property of the truncation
functors). By the induction hypothesis, both τ�m(e) and τ�m+1(e) split. Applying (TR2) and
then Proposition 2.3, we obtain that e splits. This completes the proof. �
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