

Available online at www.sciencedirect.com



JOURNAL OF Algebra

Journal of Algebra 310 (2007) 452-457

www.elsevier.com/locate/jalgebra

# Karoubianness of a triangulated category <sup>☆</sup>

Jue Le<sup>a</sup>, Xiao-Wu Chen<sup>b,\*</sup>

<sup>a</sup> Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, PR China <sup>b</sup> Department of Mathematics, University of Science and Technology of China, Hefei 230026, PR China

Received 24 October 2006

Available online 4 January 2007

Communicated by Michel Van den Bergh

Dedicated to Professor Yingbo Zhang on the occasion of her sixtieth birthday

#### Abstract

We prove that triangulated categories with bounded *t*-structures are Karoubian. Consequently, for an Extfinite abelian category over a commutative noetherian complete local ring, its bounded derived category is Krull–Schmidt.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Karoubianness; Triangulated category; t-Structure

## 1. Introduction

Let  $\mathcal{D}$  be a triangulated category [V] with its shift functor denoted by [1]. Recall from [BBD] that a *t*-structure on  $\mathcal{D}$  is a pair of strictly (i.e. closed under isomorphisms) full additive subcategories ( $\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0}$ ) satisfying the following conditions:

- (T1) Hom<sub> $\mathcal{D}$ </sub>(*X*, *Y*[-1]) = 0 for all *X*  $\in \mathcal{D}^{\leq 0}$  and *Y*  $\in \mathcal{D}^{\geq 0}$ ;
- (T2)  $D^{\leq 0}$  is closed under the functor [1], and  $D^{\geq 0}$  is closed under the functor [-1];
- (T3) for each  $X \in \mathcal{D}$ , there is an exact triangle  $A \to X \to B[-1] \to A[1]$  with  $A \in \mathcal{D}^{\leq 0}$  and  $B \in \mathcal{D}^{\geq 0}$ .

0021-8693/\$ – see front matter  $\hfill \ensuremath{\mathbb{C}}$  2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2006.11.027

 <sup>\*</sup> Partly supported by the National Natural Science Foundation of China (Grant Nos. 10301033 and 10501041).
 \* Corresponding author.

E-mail addresses: lejue@sjtu.edu.cn (J. Le), xwchen@mail.ustc.edu.cn (X.-W. Chen).

Set  $\mathcal{D}^{\leq n} = \mathcal{D}^{\leq 0}[-n]$  and  $\mathcal{D}^{\geq n} = \mathcal{D}^{\geq 0}[-n]$ ,  $n \in \mathbb{Z}$ . The *t*-structure is called *bounded* (cf. [GM1, p. 136] and [GM2, p. 286, Exercises]) if for each  $X \in \mathcal{D}$ , there exists  $m \leq n$  such that  $X \in \mathcal{D}^{\leq n} \cap \mathcal{D}^{\geq m}$ .

Recall that in an additive category  $\mathfrak{a}$ , an idempotent morphism  $e: X \to X$  is said to be *split* if there are two morphisms  $u: X \to Y$  and  $v: Y \to X$  such that  $v \circ u = e$  and  $u \circ v = \operatorname{Id}_Y$ . The category  $\mathfrak{a}$  is said to be *Karoubian* (i.e. *idempotent-split*) provided that every idempotent-splits.

Our main theorem is

**Theorem.** Let  $\mathcal{D}$  be a triangulated category with a bounded *t*-structure. Then  $\mathcal{D}$  is Karoubian.

Let  $\mathcal{A}$  be an abelian category. It is well known that the bounded derived category  $D^b(\mathcal{A})$  has a natural bounded *t*-structure. So we have

**Corollary A.** [BS, Corollary 2.10] Let  $\mathcal{A}$  be an abelian category. Then the bounded derived category  $D^b(\mathcal{A})$  is Karoubian.

Let *R* be a commutative noetherian ring which is complete and local. An abelian category  $\mathcal{A}$  over *R* is said to be *Ext-finite*, if for each  $X, Y \in \mathcal{A}$ ,  $n \ge 0$ , the *R*-module  $\operatorname{Ext}^n_{\mathcal{A}}(X, Y)$  is finitely-generated. It is not hard to see that  $\mathcal{A}$  is Ext-finite if and only if  $D^b(\mathcal{A})$  is Hom-finite over *R*. Recall that an additive category is *Krull–Schmidt* if each object is a finite direct sum of indecomposables with local endomorphism rings. It is shown in [CYZ, Theorem A.1] that an additive category is *Krull–Schmidt* if and only if it is Karoubian and for each object *X*, End(*X*) is a semiperfect ring. Finally note that an algebra over *R* which is finitely-generated as a *R*-module is semiperfect (cf. [L, Example (23.3)]). So we have

**Corollary B.** Let R be a commutative noetherian ring which is complete and local, and let  $\mathcal{A}$  be an Ext-finite abelian category over R. Then the bounded derived category  $D^b(\mathcal{A})$  is a Krull–Schmidt category.

### 2. Proof of Theorem

Before proving the theorem, we need some preparations.

2.1. Let C be a triangulated category. The following lemma is well known.

**Lemma 2.1.** Let  $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1]$  be an exact triangle. Then we have

- (1) If  $e: Z \to Z$  is a morphism satisfying  $e \circ v = v$  and  $w \circ e = w$ , then e is an isomorphism.
- (2) Assume that  $x: Z \to Z'$  and  $y: Z' \to Z$  are two morphisms satisfying  $x \circ v = 0$  and  $w \circ y = 0$ . Then  $x \circ y = 0$ .

**Proof.** (1) By assumption, we have the following morphism of exact triangles

Then it is well known that e is an isomorphism (e.g., by using [GM2, IV.1, Corollary 4(a)]).

(2) Since  $x \circ v = 0$ , then it is again well known that x factors through w (e.g., by using [GM2, IV.1, Proposition 3]). Suppose  $x': X[1] \to Z'$  such that  $x = x' \circ w$ . Hence  $x \circ y = x' \circ w \circ y = 0$ .

Let a be any additive category. An idempotent  $e: X \to X$  splits if there are morphisms  $u: X \to Y$  and  $v: Y \to X$  such that  $v \circ u = e$  and  $u \circ v = \operatorname{Id}_Y$ . Then u and v are the cokernel and kernel of the morphism  $\operatorname{Id}_X - e$ , respectively. Moreover, it is not hard to see that an idempotent e splits if and only if 1 - e has a kernel, if and only if 1 - e has a cokernel. We say that an idempotent e strongly splits if both e and 1 - e split. In this case, assume that 1 - e splits as  $X \xrightarrow{u'} Y' \xrightarrow{v'} X$ , then  $\binom{u}{u'}: X \to Y \oplus Y'$  is an isomorphism, whose inverse is given by (v v'). The following lemma seems to be known.

**Lemma 2.2.** Let  $e: X \to X$  be an idempotent morphism in a triangulated category C. Then e splits if and only if e strongly splits.

**Proof.** We just prove the "only if" part. Assume that *e* splits as  $X \xrightarrow{u} Y \xrightarrow{v} X$ . We need to prove that 1 - e splits. By the above facts, it suffices to show that *e* has a cokernel. Since  $e = v \circ u$  and that *u* is clearly epi, thus we know the cokernel of *v*, if in existence, is just the cokernel of *e*.

Take an exact triangle  $Y \xrightarrow{v} X \xrightarrow{\pi} Z \rightarrow Y[1]$ . Note that v is a section, then by [H, p. 7, Lemma 1.4] one obtains that  $\pi$  is a retraction. Now using [H, Chapter I, Proposition 1.2(b)], it is not hard to see that  $\pi$  is the cokernel of v, and thus the cokernel of e. This completes the proof.  $\Box$ 

We have the following key observation.

Proposition 2.3. Let the following diagram be a morphism of exact triangles

| $X \xrightarrow{u}$   | ► Y                                    | $> Z \xrightarrow{w}$        | $\rightarrow X[1]$ |
|-----------------------|----------------------------------------|------------------------------|--------------------|
| <i>e</i> <sub>1</sub> | e2                                     | e <sub>3</sub>               | $e_1[1]$           |
| $X \xrightarrow{u} X$ | $\rightarrow Y \stackrel{\forall}{} v$ | $ > Z \xrightarrow{\psi} w $ | $\succ X[1]$       |

with each  $e_i$  an idempotent. Then if  $e_1$  and  $e_2$  splits, so does  $e_3$ .

**Proof.** By Lemma 2.2, both  $e_1$  and  $e_2$  strongly split. We may assume that  $X = X_1 \oplus X_2$ ,  $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$  and  $Y = Y_1 \oplus Y_2$ ,  $e_2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ . By  $e_2 \circ u = u \circ e_1$ , one deduces that u is diagonalizable, say  $u = \begin{pmatrix} u_1 & 0 \\ 0 & u_2 \end{pmatrix}$ . Take the following exact triangles in C:

$$X_i \xrightarrow{u_i} Y_i \xrightarrow{v_i} Z_i \xrightarrow{w_i} X_i[1], \quad i = 1, 2.$$

Hence there is an isomorphism of exact triangles



Set  $e = \theta^{-1} \circ e_3 \circ \theta$ . Note that *e* is also an idempotent, and *e* splits if and only if  $e_3$  splits. We have the following morphism of exact triangles

$$\begin{array}{c|c} X_1 \oplus X_2 \xrightarrow{\begin{pmatrix} u_1 & 0 \\ 0 & u_2 \end{pmatrix}} Y_1 \oplus Y_2 \xrightarrow{\begin{pmatrix} v_1 & 0 \\ 0 & v_2 \end{pmatrix}} Z_1 \oplus Z_2 \xrightarrow{\begin{pmatrix} w_1 & 0 \\ 0 & w_2 \end{pmatrix}} (X_1 \oplus X_2)[1] \\ \\ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} & \downarrow \\ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} & \downarrow \\ X_1 \oplus X_2 \xrightarrow{\begin{pmatrix} u_1 & 0 \\ 0 & u_2 \end{pmatrix}} Y_1 \oplus Y_2 \xrightarrow{\begin{pmatrix} v_1 & 0 \\ 0 & v_2 \end{pmatrix}} Z_1 \oplus Z_2 \xrightarrow{\begin{pmatrix} w_1 & 0 \\ 0 & w_2 \end{pmatrix}} (X_1 \oplus X_2)[1]. \end{array}$$

Write  $e = \begin{pmatrix} e_{11} & e_{12} \\ e_{21} & e_{22} \end{pmatrix}$  in a matrix form. By the commutativity of the diagram (and using some matrix calculation), we get

$$e_{11} \circ v_1 = v_1, \qquad w_1 \circ e_{11} = w_1;$$
  

$$e_{12} \circ v_2 = 0, \qquad e_{21} \circ v_1 = 0, \qquad e_{22} \circ v_2 = 0;$$
  

$$w_1 \circ e_{12} = 0, \qquad w_2 \circ e_{21} = 0, \qquad w_2 \circ e_{22} = 0.$$

Using Lemma 2.1(1), we deduce that  $e_{11}$  is an isomorphism. Applying Lemma 2.1(2) four times, we get

$$e_{12} \circ e_{21} = 0$$
,  $e_{12} \circ e_{22} = 0$ ,  $e_{22}^2 = 0$  and  $e_{21} \circ e_{12} = 0$ .

By  $e^2 = e$  and using the above four identities, we obtain

$$e_{11}^2 = e_{11}, \quad e_{11} \circ e_{12} = e_{12}, \quad e_{21} \circ e_{11} + e_{22} \circ e_{21} = e_{21} \text{ and } e_{22} = 0.$$

Then  $e_{11} = \text{Id}_{Z_1}$  and  $e = \begin{pmatrix} 1 & e_{12} \\ e_{21} & 0 \end{pmatrix}$ . Note that  $e_{12} \circ e_{21} = 0$  and  $e_{21} \circ e_{12} = 0$ , hence *e* splits as

$$Z_1 \oplus Z_2 \stackrel{(1 e_{12})}{\longrightarrow} Z_1 \stackrel{\begin{pmatrix} 1 \\ e_{21} \end{pmatrix}}{\longrightarrow} Z_1 \oplus Z_2.$$

This completes the proof.  $\Box$ 

**Remark 2.4.** Note that the proofs of Lemmas 2.1, 2.2 and Proposition 2.3 do not use the axiom (TR4) in [V, p. 3]. Hence they hold for pre-triangulated categories.

2.2. In what follows,  $\mathcal{D}$  is a triangulated category with a *t*-structure  $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$ . By [H, p. 58], the pair  $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 1})$  is a *torsion pair* of  $\mathcal{D}$ , in particular,  $\mathcal{D}^{\leq 0}$  and  $\mathcal{D}^{\geq 1}$  are closed under "extensions," i.e., for any exact triangle  $X \to Y \to Z \to X[1]$  with  $X, Z \in \mathcal{D}^{\leq 0}$  (respectively  $X, Z \in \mathcal{D}^{\geq 1}$ ), so does *Y*. Now it is not hard to infer that both  $\mathcal{D}^{\leq n}$  and  $\mathcal{D}^{\geq n}$  are closed under extensions for each  $n \in \mathbb{Z}$ .

Recall from [GM1, p. 134] and [GM2, IV.4] there are *truncation functors*  $\tau_{\leq 0} : \mathcal{D} \to \mathcal{D}^{\leq 0}$  and  $\tau_{\geq 1} : \mathcal{D} \to \mathcal{D}^{\geq 1}$  which satisfy the following conditions:

- (1) for each  $X \in \mathcal{D}$ , there is an exact triangle  $\tau_{\leq 0}X \to X \to \tau_{\geq 1}X \to (\tau_{\leq 0}X)[1]$  (cf. axiom (T3));
- (2) for each morphism  $f: X \to Y$ , one has the following morphism of triangles

$$\begin{split} \tau_{\leqslant 0} X &\longrightarrow X \longrightarrow \tau_{\geqslant 1} X \longrightarrow (\tau_{\leqslant 0} X) [1] \\ & \downarrow^{\tau_{\leqslant 0}(f)} & \downarrow^{f} & \downarrow^{\tau_{\geqslant 1}(f)} & \downarrow^{\tau_{\leqslant 0}(f) [1]} \\ \tau_{\leqslant 0} Y \longrightarrow Y \longrightarrow \tau_{\geqslant 1} Y \longrightarrow (\tau_{\leqslant 0} Y) [1]. \end{split}$$

In general, we define  $\tau_{\leq n} : \mathcal{D} \to \mathcal{D}^{\leq n}$  and  $\tau_{\geq n+1} : \mathcal{D} \to \mathcal{D}^{\geq n+1}$  by  $\tau_{\leq n} = [-n] \circ \tau_{\leq 0} \circ [n]$ and  $\tau_{\geq n+1} = [-n] \circ \tau_{\geq 1} \circ [n]$ , respectively. Then it is not hard to see that similar conditions as (1) and (2) hold for  $\tau_{\leq n}$  and  $\tau_{\geq n+1}$ .

The following fact is easy (cf. [GM2, p. 280]).

**Lemma 2.5.** Let  $m \leq n$ . Then  $\tau_{\leq n}(\mathcal{D}^{\geq m}) \subseteq \mathcal{D}^{\geq m} \cap \mathcal{D}^{\leq n}$  and  $\tau_{\geq m}(\mathcal{D}^{\leq n}) \subseteq \mathcal{D}^{\leq n} \cap \mathcal{D}^{\geq m}$ .

**Proof.** We only show the first inclusion. It suffices to show  $\tau_{\leq n}(\mathcal{D}^{\geq m}) \subseteq \mathcal{D}^{\geq m}$ . Let  $X \in \mathcal{D}^{\geq m}$ . Consider the exact triangle  $\tau_{\leq n}X \to X \to \tau_{\geq n+1}X \to (\tau_{\leq n}X)[1]$ . So  $\tau_{\leq n}X$  is an extension of  $(\tau_{\geq n+1}X)[-1]$  and X, both of which are easily seen to lie in  $\mathcal{D}^{\geq m}$ . Note that  $\mathcal{D}^{\geq m}$  is closed under extensions, thus we infer that  $X \in \mathcal{D}^{\geq m}$ .  $\Box$ 

From now on, we assume that the *t*-structure in our consideration is bounded, i.e., for each *X*, there exists  $m \le n$  such that  $X \in \mathcal{D}^{\le n} \cap \mathcal{D}^{\ge m}$ . First we note that  $\bigcap_{n \in \mathbb{Z}} \mathcal{D}^{\le n} = \{0\}$ . To see this, let  $X \in \bigcap_{n \in \mathbb{Z}} \mathcal{D}^{\le n}$ . By the bounded property, we may assume that  $X \in \mathcal{D}^{\ge m+1}$  for some *m*. Note that  $\operatorname{Hom}_{\mathcal{D}}(\mathcal{D}^{\le m}, \mathcal{D}^{\ge m+1}) = 0$ , and  $X \in \mathcal{D}^{\le m}$ . So  $\operatorname{Hom}_{\mathcal{D}}(X, X) = 0$ , i.e., X = 0. Similarly, we have  $\bigcap_{n \in \mathbb{Z}} \mathcal{D}^{\ge n} = \{0\}$ . Therefore, the *t*-structure is *non-degenerate* in the sense of [GM1, p. 135, Theorem 3.5.1]. Moreover, by [GM1, p. 135, Theorem 3.5.1c] one sees immediately that our notion of bounded *t*-structures coincides with the one in [GM1, p. 136] (and also in [GM2, p. 286, Exercises]).

Let  $X \in \mathcal{D}$  be non-zero. Set  $b(X) = \max\{n \mid X \in \mathcal{D}^{\geq n}\}$ ,  $t(X) = \min\{n \mid X \in \mathcal{D}^{\leq n}\}$  and w(X) = t(X) - b(X) + 1. If X is zero, set w(X) = 0. By the above non-degeneratedness, we know that b(X) and t(X) are well defined. It is direct to see that  $w(X) \geq 0$ , which will be called the *width* of X.

**Proof of Theorem.** Set  $\mathcal{A} = \mathcal{D}^{\leq 0} \cap \mathcal{D}^{\geq 0}$  to be the *core* (i.e. *heart*) of the *t*-structure. By [BBD],  $\mathcal{A}$  is an abelian category, in particular, every idempotent in  $\mathcal{A}$  splits.

We will show that for each  $n \ge 1$ , every idempotent  $e: X \to X$  with  $w(X) \le n$  splits. This will complete the proof. Use induction on the width. If n = 1, then  $X \in \mathcal{A}[-i]$  with i = b(X) = t(X). Since  $\mathcal{A}$  and thus  $\mathcal{A}[-i]$  are abelian categories, so e splits in  $\mathcal{A}[-i]$ , and thus in  $\mathcal{D}$ .

Assume now the assertion holds for *n*. Consider  $e: X \to X$  to be an idempotent with w(X) = n + 1. Assume that b(X) = m. Therefore by Lemma 2.5, one has  $\tau_{\leq m} X \in \mathcal{A}[-m]$  and  $\tau_{\geq m+1} X \in \mathcal{D}^{\leq n+m} \cap \mathcal{D}^{\geq m+1}$ , and thus  $w(\tau_{\leq m} X) = 1$  and  $w(\tau_{\geq m+1} X) \leq n$ . Consider the following morphisms of exact triangles:

$$\begin{split} \tau_{\leqslant m} X &\longrightarrow X \longrightarrow \tau_{\geqslant m+1} X \longrightarrow (\tau_{\leqslant m} X) [1] \\ & \downarrow^{\tau_{\leqslant m}(e)} & \downarrow^{e} & \downarrow^{\tau_{\geqslant m+1}(e)} & \downarrow^{\tau_{\leqslant m}(e) [1]} \\ \tau_{\leqslant m} X \longrightarrow X \longrightarrow \tau_{\geqslant m+1} X \longrightarrow (\tau_{\leqslant m} X) [1]. \end{split}$$

Note that both  $\tau_{\leq m}(e)$  and  $\tau_{\geq m+1}(e)$  are idempotents (by the functorial property of the truncation functors). By the induction hypothesis, both  $\tau_{\leq m}(e)$  and  $\tau_{\geq m+1}(e)$  split. Applying (TR2) and then Proposition 2.3, we obtain that *e* splits. This completes the proof.  $\Box$ 

### Acknowledgments

Let us remark that the theorem and its proof are inspired by some discussions with Prof. Michel Van den Bergh and Prof. Pu Zhang. We thank them very much.

## References

[BS] P. Balmer, M. Schlichting, Idempotent completion of triangulated categories, J. Algebra 236 (2) (2001) 819-834.

[BBD] A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Astérisque 100 (1982).

- [CYZ] X.W. Chen, Y. Ye, P. Zhang, Algebras of derived dimension zero, Comm. Algebra, in press, math.RT/0608377.
- [GM1] S.I. Gelfand, Yu.I. Manin, Homological Algebra, Springer-Verlag, Berlin, 1999.
- [GM2] S.I. Gelfand, Yu.I. Manin, Methods of Homological Algebra, second ed., Springer-Verlag, Berlin, 2003.
- [H] D. Happel, Triangulated Categories in Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser., vol. 119, Cambridge Univ. Press, 1988.
- [L] T.Y. Lam, A First Course in Noncommutative Rings, Grad. Texts in Math., vol. 13, Springer-Verlag, 1991.
- [V] J.L. Verdier, Catégories dérivées, état 0, in: Lecture Notes in Math., vol. 569, 1977, pp. 262–311.